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Abstract Intellectual and developmental disabilities (IDD) are lifelong medical 
conditions that affect neurodevelopmental trajectories. Numerous risk factors 
have been linked to IDD, including biomedical and environmental influences. 
However, specific underlying etiology is not necessarily easily identified. 
Nongenetic pathways are dependent upon sensitive periods of neurodevelopment, 
including the perinatal period. In this chapter, we review nongenetic perinatal risk 
factors that influence fetal brain development and confer risk to later IDD 
diagnosis in childhood. Following this, we outline factors that mitigate risk for 
future offspring development of IDD. Given that environmental factors are inher-
ently modifiable, we discuss research implications for future public health policy 
and advocacy.
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Intellectual and developmental disabilities (IDD) are characterized by impairments 
or altered developmental trajectories of intellectual and adaptive functioning 
(American Psychiatric Association [APA], 2013) and represent neurodevelopmen-
tal disorders that begin prior to 18 years of age. In terms of prevalence rates, 1 out 
of 100 children will develop an IDD following birth (Maulik et al., 2011), which can 
emerge from both genetic and nongenetic sources. Genetically linked IDD represent 
30% to 50% of all IDD and result from various genetic abnormalities, including 
chromosomal alterations (e.g., trisomy 21), inherited genetic signatures (e.g., 
Fragile X syndrome), and/or single gene traits (e.g., Prader-Willi syndrome) 
(Kaufman et al., 2010; Rauch et al., 2006). Nongenetically linked IDD arise from a 
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variety of risk factors or events that occur pre- and perinatally. Mechanistic path-
ways that connect nongenetic exposures with later IDD are less understood, despite 
the high prevalence. This chapter will review the current understanding of common 
exposures known to increase risk for IDD and elucidate key directions for 
future work.

IDD include a range of co-occurring neurodevelopmental conditions, such as 
autism spectrum disorder (autism), cerebral palsy, Down syndrome, fetal alcohol 
spectrum disorders, schizophrenia, and attention-deficit hyperactivity disorder 
(ADHD). IDD populations experience a myriad of health disparities, namely, 
decreased life expectancy (Anderson et al., 2013). In the United States, approxi-
mately 17% of children aged 3–17  years are diagnosed with an IDD (Cogswell 
et  al., 2022). Data from the National Health Interview Survey suggests that the 
prevalence of any diagnosed developmental disability increased from 2019 to 2021 
among children 3–17 years, from 7.40% to 8.56% in the United States (Zablotsky 
et al., 2023), denoting an increase in prevalence. IDD conditions manifest in the 
early childhood period, altering an individual’s neurodevelopmental trajectory com-
pared to their typically developing peers. The lifelong impacts associated with an 
IDD diagnosis underscore the need for research and healthcare support to improve 
the well-being of individuals with IDD and their families.

Perinatal exposures have long been shown to increase the risk for IDD in later 
childhood, although pathways that causally explain adverse outcomes are only 
beginning to be understood. Progress in this area depends on careful consideration 
of the multiple and diverse exposures and complex interactions that increase IDD 
risk via immediate, short-term, and longer-term effects that unfold across child-
hood. Developmental equifinality (Cicchetti & Rogosch, 1996) refers to the idea 
that exposure to diverse sets of perinatal exposures can have similar phenotypic 
expressions (in the case of IDD, related to cognitive, adaptive, or motor delays). 
Thus, identifying mechanistic pathways leading to IDD will require an understand-
ing of how a wide range of perinatal exposures (preterm birth, infection, neurotoxin 
exposure, etc.) influence key developmental systems. Developmental multifinality 
(Cicchetti & Rogosch, 1996) refers to the idea that any one exposure can lead to a 
heterogeneous range of outcomes, which is also relevant for understanding path-
ways that connect perinatal exposures to IDD risk. For example, preterm birth is not 
only associated with risk for IDD but a wide range of neuropsychiatric disorders 
and/or growth delays, and despite increased risk, many children also show no long- 
term consequences (van Baar et al., 2005). Adding to the complexity, perinatal risk 
exposures often co-occur, making it difficult to disentangle the individual versus 
interactive influences of these adversities on developmental risk. Timing or severity 
of exposure, infant characteristics (male sex, low birth weight), and neuroprotective 
factors relate to the relative risk for IDD.  Neonatal factors (male sex, low birth 
weight), postnatal environmental risk, and neuroprotective factors may influence 
the likelihood of later risk and resilience (Huang et al., 2016).
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Multiple theories from various disciplines consider how and why perinatal fac-
tors may influence later IDD risk. The most prominent or widely cited theories 
include the “fetal programming hypothesis” (Seckl & Holmes, 2007), the “develop-
mental programming hypotheses” (Barker, 2004; Langley-Evans, 2006, 2015), and 
the “developmental origins of health and disease” (DOHAD) (Barker, 1990, 2004). 
These models generally hypothesize that intrauterine environments, events, or 
injury/disturbances influence developmental trajectories at a sensitive point in 
development. Programmatically, these exposures influence neurocognitive, behav-
ioral, and physical development across neonatal, infant, toddler, later childhood, 
and even adult stages of life. A discussion of the differences in theoretical perspec-
tive goes beyond the scope of the chapter. However, these theoretical viewpoints 
offer a framework for understanding how and why such a diverse set of exposures 
can have similar or vast consequences related to IDD (and comorbid developmental 
problems, which we discuss later in this chapter). For example, perinatal stressors, 
including nutrient or oxygen deprivation, teratogen exposure, and psychosocial 
adversity, are hypothesized to causally influence epigenetic and hypoxic changes in 
the fetal brain and body, which then influence hormones, metabolic activity, and 
brain development. In combination, these cascading influences predispose offspring 
to a spectrum of adverse outcomes. Pathways may involve myriad disturbances 
including altered inflammatory, glucocorticoid, or HPA axis programming (Packard 
et  al., 2016; Xiong & Zhang, 2013), GABA signaling (Braat & Kooy, 2015; 
Cherubini & Ben-Ari, 2023; Deidda et al., 2014; Sgadó et al., 2011; Tang et al., 
2021), and macro-level changes to the brain structure and functional organization 
(Bohlken et al., 2014). Further, the risk that any one exposure will lead to later IDD 
will depend on timing, severity, co-occurring risk factors, and neuroprotective fac-
tors (Fig. 1).

In what follows, we consider risk factors during the perinatal period that have 
implications for IDD in offspring. These are potential consequences of one’s genetic 
profile, environmental exposures, and birth experiences. Some known perinatal 
exposures that impact developmental outcomes are term and preterm brain injury, 

Fig. 1 Overview of 
perinatal factors that 
influence IDD risk and 
development
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such as intraventricular hemorrhage, white matter injury, birth trauma—subpial 
hemorrhage, large subarachnoid hemorrhage, and perinatal stroke. Perinatal infec-
tions such as bacterial meningitis and viral meningoencephalitis present known risk 
factors. Other risk factors that will be addressed include infants born prematurely 
and infants requiring intensive neonatal interventions. First, we will define various 
adversities that occur during the perinatal period. Second, we will connect these 
exposures with various IDD that emerge in later childhood. Third, we will discuss 
evidence for prevention and intervention in neonatal intensive care units (NICUs) 
and in early development, shown to effectively mitigate risks associated with peri-
natal adversities and IDD in later childhood. Finally, we will discuss key gaps in 
understanding and addressing structural barriers that inform policy, and future 
directions for research.

 Defining Perinatal Exposures That Pose Risk for IDD

There are many etiological pathways during brain development implicated in the 
perinatal environment that can consequently increase risk of IDD. We will review 
some common perinatal exposures that are known to undermine healthy brain 
development and increase risk for IDD.  They are grouped into two overarching 
themes: medical exposures (perinatal brain injury, infection, and prematurity) and 
social adversities (maternal-infant separation in the NICU, and maternal mental 
health affecting bonding and responsiveness).

 Medical Exposures

Perinatal Brain Injury The early postnatal period is a time of significant risk for 
brain injury and can take the form of numerous etiologies. Most commonly, 1.5 in 
1000 term-born infants experience rates of hypoxic-ischemic encephalopathy (HIE) 
experience rates of hypoxic-ischemic encephalopathy (HIE) in 1.5  in 1000 births 
(Kurinczuk et al., 2010) and stroke occurs in stroke in 0.6  in out of 1000 births 
(Laugesaar et al., 2007). Across causes, brain injury during the perinatal period has 
been associated with later neurodevelopmental impairments including motor, lan-
guage, and cognitive delays (Novak et al., 2018). While there is no single cause for 
many of these types of injury, there are multiple contributing factors that play a role 
in increased prevalence.

One of the most cited causes of neonatal brain injury relates to birth trauma or 
damage caused as a direct result of labor and/or delivery (Gupta & Cabacungan, 
2021). Rather than a specific cause, birth trauma constitutes a wide range of insults 
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across the spectrum, from minor cuts and scrapes to severe and life-threatening 
damage to the brain and other organs. Of factors that make birth trauma more likely 
is the use of vacuums and forceps during delivery (Cieplinski & Bhutani, 1996; 
Linder et al., 2013) and infants who are large for gestational age, which can be com-
mon in mothers who are obese or experience gestational diabetes (Boulet et al., 
2003; Persson et al. (2013); Shuffrey et al., 2023). Beyond direct mechanical causes, 
numerous other factors can contribute to significant brain injury, with the most com-
mon being hypoxic events. These events represent instances where insufficient oxy-
gen reaches the brain and are associated with greater neuro developmental 
difficulties, especially in motor domains such as those implicated with cerebral 
palsy (Graham et al., 2008). Importantly, while brain injury can impact infants born 
at any age, it is more common in infants born prematurely due to an increased vul-
nerability of the immature brain to perinatal insults and a greater prevalence of 
prematurity-related complications with lower birth gestational age (Inder 
et al., 2023).

Perinatal Infections One of the other major risks for later neurodevelopmental 
concerns is perinatal infections, including neonatal sepsis, meningitis, and various 
viruses that cause high fevers and respiratory infections such as pneumonia and 
bronchiolitis. Due to the relatively immature immune system at birth and before, 
neonates are particularly susceptible to infection and vulnerable to longer-term 
impacts on development (Ygberg & Nilsson 2012). This is especially true for infants 
born prematurely who have even less mature immune responses compared to term- 
born infants—although differences quickly minimize between term- and preterm- 
born infants shortly after birth (Olin et al., 2018).

Of the most common infections, neonatal sepsis, which is an extreme response 
to an infection, often occurs within the first days of life and impacts as many as 
2.2% of infants. Although often treatable, long-lasting neurological effects can be 
observed throughout childhood (Glaser et al., 2021). Like sepsis, neonatal meningi-
tis can arise from a diverse set of causes; however, it ultimately results in severe 
inflammation of the meninges, the membranes surrounding the brain. Importantly, 
more severe cases are associated with significant motor and cognitive disabilities 
later in childhood (Ku et al., 2015). In both sepsis and meningitis, inflammation has 
been reported as the primary cause of subsequent impairments likely due to its 
impacts on the brain (Humberg et al., 2020). Conversely, respiratory disorders in the 
neonatal period are common, including pneumonia and bronchiolitis, but rather 
than just inflammation, these disorders can also lead to severe respiratory distress 
which impacts oxygenation saturation (Gill et  al., 2022; Nissen, 2007). Further, 
studies have reported that two known viruses such as Zika (Mlakar et al., 2016) and 
Herpes Simplex (Fa et  al., 2020) when contracted during pregnancy leading to 
infant in utero exposure have caused structural cortical changes. Regardless of the 
cause, however, the presence of neonatal infection is a significant risk factor for 
later neurodevelopmental impairments including cerebral palsy and intellectual dis-
ability (Rand et al., 2016; Mitha et al., 2013).
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Prematurity and Related Complications Premature birth is one of the most com-
mon risk factors for later IDD. While most infants are born at term around 40 ges-
tational weeks, approximately 1  in 10 births are infants born preterm before 36 
gestational weeks (Osterman et al., 2023; Walani, 2020). While those rates have 
remained consistent over the past two decades (Blencowe et  al., 2012; Gyamfi- 
Bannerman & Ananth, 2014), advancements in neonatal care have dramatically 
increased the survival rate (Bell et al., 2022; Younge et al., 2017) and also the age at 
which ex utero survival for extremely premature infants is possible. However, there 
is consistent evidence that infants born preterm are at greater risk for a wide range 
of developmental delays and impairments, including pronounced sensorimotor defi-
cits (Cabral et al., 2016; Hee Chung et al., 2020), language delays (Barre et al., 
2011; Woodward et al., 2009), and broad cognitive impairments (Hee Chung et al., 
2020; Kerr-Wilson et al., 2012) alongside higher rates of neurodevelopmental dis-
orders (Bhutta et al., 2002; Joseph et al., 2017; Larroque et al, 2008; Sucksdorff 
et al., 2015). IDD is a potential risk factor for very prematurely born babies, as stud-
ies have found that prematurity may cause future development of neurobehavioral 
needs related to lower IQ, inattention, learning problems, and mental health prob-
lems (Perlman, 2001; Hack & Taylor, 2000).

The preterm period, between birth and term equivalent age, represents a particu-
lar period of neuro-vulnerability. The period typically comprising the late second 
through third trimesters is a period of rapid brain development. During this period, 
in utero fetuses experience rapid increases in brain volume (Andescavage et  al., 
2017), strengthening of the brain’s white matter tracts (Jaimes et al., 2020), and 
development of the earliest functional proto-networks (Turk et al., 2019; van den 
Heuvel & Thomason, 2016). Perturbations to these developmental processes likely 
influence later neurodevelopmental sequelae. In terms of impact on the developing 
brain, preterm birth has been associated with structural and functional alterations 
that are unique and not related to focal brain injury. For example, prematurity has 
been connected with specific reductions in cortical and subcortical gray matter, 
diminished cortical gyrification, and delayed maturation in gray and white matter 
structures (Ball et al., 2012; Keunen et al., 2012; Rathbone et al., 2011; Shimony 
et al., 2016; Volpe, 2009; Thompson et al., 2007). Recent work indicates that prema-
ture birth influences connectivity patterns across the whole brain (Doria et al., 2010; 
Smyser et al., 2016; Scheinost et al., 2017) and has a pronounced effect on connec-
tivity that supports thalamo-cortical circuitry, both structurally (Ball et al., 2013, 
2014) and functionally (Doria et  al., 2010; Smyser et  al., 2010; Toulmin et  al., 
2015). Reductions in inter-hemispheric connectivity (Smyser et al., 2010, 2013) and 
altered lateralization of language regions (Kwon et al., 2015) have also been associ-
ated with premature birth. Recent work shows that prematurity may increase con-
nectivity between superior parietal regions and motor areas, which may explain risk 
for developmental coordination problems that emerge later in life (Eyre et al., 2021). 
These disruptions in long-range and intrahemispheric connectivity seem to be 
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candidate pathways that increase risk for long-term cognitive deficits and IDD risk 
that emerges in later childhood. White matter injury related to intraventricular hem-
orrhage is also common in high-risk preterm babies and can manifest as diminished 
inter and intrahemispheric connectivity on functional levels (Grotheer et al., 2023; 
Omidvarnia et al., 2015; Smyser et al., 2013).

IDD risk may stem from myriad maturational differences and injuries to the 
developing brain of prematurely born children. The most prevalent differences and 
injuries include perinatal brain injury, co-occurring medical diagnoses that alter 
circulatory or pulmonary function, and changes arising from development occur-
ring in the extrauterine rather than intrauterine environment (Polglase et al., 2014; 
Sarda et al., 2021; Volpe, 2009; Yates et al., 2021). Beyond those injuries, however, 
many infants experience comorbid medical conditions in tandem with their prema-
ture birth. While all forms of medical comorbidities are of concern in preterm 
infants for later neurodevelopment in particular are those that can impair either 
blood flow to the brain or the oxygenation of blood being carried to the brain. These 
can include brief complications such as a short-term hypoxic event or longer-term 
medical diagnoses. Among the list of common co-occurring medical conditions in 
premature infants, those such as patent ductus arteriosus (PDA) or bronchopulmo-
nary dysplasia (BPD) are associated with neurodevelopmental outcomes in child-
hood (Gudmundsdottir et al., 2021; Hee Chung et al., 2020; Schmidt et al., 2003). 
Even with infants without significant injury or comorbidities, altered developmental 
trajectories can be observed. One likely explanation is the stark difference between 
the intrauterine and extrauterine environments. The intrauterine environment radi-
cally differs from the extrauterine, especially for younger-born infants who are 
admitted to the NICU. During intrauterine development, fetuses are in a heavily 
shielded environment protected from noxious stimuli such as bright lights, loud 
noises, and intense tactile experiences. Daily life in a NICU is significantly more 
sensorially intense with loud noises—ranging from constant machine hum to alarm 
alerts, which can reach as loud as 85 decibels (Slevin et al., 2000; Williams et al., 
2007)—and bright, intense lights (White, 2020), which have been associated with 
poorer outcomes (Ream & Lehwald, 2018). Efforts to reduce sensory stimulation 
and stress in the NICU are burgeoning, which may reduce risk for atypical 
development.

 Social Input and Caregiving Adversities

Thus far, this chapter has focused on medical hazards that cause IDD. However, 
burgeoning evidence over the last decades has connected psychosocial adversity, 
and toxic stress, with risk for IDD and other neurodevelopmental and mental health 
problems. The experience of extreme stress prior to conception through the postpar-
tum period is increasingly shown to shape developmental outcomes. Effects can 
occur independently or interactively with other stressors. We focus on two common 
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stressors that infants are likely to face in the NICU or immediately following birth 
which can increase the risk for IDD in later childhood.

Separations and Disruptions in Caregiving Following typical birth, newborns 
spend much of their time in close contact with their primary caregiver, which serves 
to support the regulatory capabilities of the infant and promote bonding. Infants 
cared for in the NICU are often deprived of the same level of close physical contact 
with primary caregivers, which is increasingly shown to act as an additional stress 
exposure at this formative phase of life. Duration of separations may last up to 
weeks or months for the highest risk cases, adding an additional challenge to healthy 
development on top of myriad other stressors related to medical procedures, over-
stimulating conditions, pain, and instability. Not surprisingly, stress exposure dur-
ing NICU, including separations from caregivers, has been linked with altered 
functional connectivity and decreased brain size in infancy (Smith et al., 2011) and 
risk for IDD or related neurodevelopmental delays when in toddlerhood (Chau 
et al., 2013). Painful procedures in the NICU have been linked to altered early brain 
development. This may be more relevant to the section above on preterm birth—
explaining some of the within-group variance in outcomes among babies born pre-
term (Brummelte et al., 2012). Later in this chapter, we will discuss growing support 
for interventions that promote close physical contact and minimal separation 
between mothers and their babies cared for in the NICU.

 Systemic Factors, Poverty, and Institutional Racism

Mental illness and poverty can exacerbate the challenges associated with IDD by 
the limited access to healthcare, education, and support services, in addition to 
adverse environmental conditions that can affect brain development. Addressing 
poverty and its associated disparities is critical for improving outcomes for indi-
viduals with IDD. Factors that provide support can often buffer against ill effects. 
By offering affordable services and collaborative treatment with medical profes-
sionals, educational systems, and family members, it is possible to provide early 
diagnosis and intervention, improving long-term outcomes for these individuals. 
Specialized resources and quality education in policy reformation not only scaffold 
the development and learning of those affected but also contribute to breaking the 
cycle of poverty that can exacerbate rates of IDD.

Racism and Discrimination Racism and discrimination escalate liability for IDD 
risk. Disability status including IDD is known to impact socioeconomic status, 
affecting SES outcomes such as educational achievement, income, and employment 
(Gage et al., 2021). Individuals with IDD demonstrate higher unemployment rates 
than their nondisabled peers and employment opportunities are, on average, lower 
paying (Quierós et al., 2015). Systemic, institutional, and personal experiences of 
discrimination, such as those related to one’s sexual orientation/identity, ethnicity, 
and religious and cultural practices, can marginalize women and increase stress dur-
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ing pregnancy. For example, women predominantly from Black and Latinx com-
munities report higher at-risk adverse mental health outcomes associated with 
systematic racism and preterm birth are reportedly higher for these communities 
(Alhusen et al., 2016; Bower et al., 2018, 2023). From the extant literature, social 
inequities demonstrate strong relations with an individual’s IDD status.

Poverty Approximately 719 million people around the world live in impoverished 
conditions, with the COVID-19 pandemic recently exacerbating this issue (CDC, 
2023). Poverty exerts a significant and detrimental effect, particularly on those with 
IDD.  Epidemiological research has consistently demonstrated an association 
between poverty and IDD across countries, with the prevalence of IDD higher 
among those in lower socioeconomic positions (Emerson, 2007). Restricted access 
to healthcare services due to poverty can result in delayed diagnosis and treatment, 
hindering early intervention efforts. This limitation coupled with reduced awareness 
and opportunities for educational enrichment can compound the challenges faced 
by those with these disorders (Graham, 2005). Furthermore, inadequate nutrition 
and food insecurity can impair healthy brain function and development (Prado & 
Dewey, 2014), potentially worsening the impact of these disorders and escalating 
the incidence of IDD (Rose-Jacobs et al., 2008). Cross-sectional research from the 
US National Survey of Children’s Health found that among preterm children, chil-
dren living in households that could not afford nutritious meals were more likely to 
have a learning disability compared to households who could afford nutritious 
meals (Okoli et al., 2022). The chronic stressors and adverse environmental factors 
prevalent in impoverished households may increase the severity of IDD (Hertzman 
& Boyce, 2010).

 Consequences of Perinatal Risk Related to IDD

Thus far, we have discussed how environmental risks during the perinatal period can 
consequently cause IDD, reviewing common perinatal exposures that are known to 
undermine healthy brain development. Below, we focus on IDD, mapping the phe-
notypes related to an IDD, with implications in a facet of developmental domains—
cognitive function, adaptive function, motor disabilities, learning disabilities, and 
language delays. We also discuss the association with risk for autism, attention dis-
orders, and other known psychiatric comorbidities.

 Defining Intellectual and Developmental Disabilities

Diagnostic criteria for IDD are defined by multiple organizations and bodies, 
including the International Classification of Disease (ICD-11) from the World 
Health Organization (WHO), the American Association on Intellectual and 
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Developmental Disabilities (AAIDD; Schalock et al., 2010), and the APA Diagnostic 
Statistical Manual (5th ed., text rev.; DSM-5-TR; American Psychiatric Association, 
2022). Definitions across these organizations define IDD based on three criteria 
involving (1) cognitive functioning including intellectual abilities such as reason-
ing, problem-solving, memory, and learning; (2) adaptive functioning, encompass-
ing the practical skills required for everyday life, such as communication, self-care, 
social interactions, and the ability to live independently; and (3) a manifestation of 
symptoms of intellectual and adaptive disability occurring in childhood. The sever-
ity of intellectual developmental disorder (intellectual disability) is categorized into 
different levels through the DSM-5-TR, ranging from mild, moderate, severe, and 
profound. Diagnosis is usually made in childhood, based on standardized assess-
ments and clinical evaluations. The process is often expensive and quite involved, 
so there are likely many individuals, especially with mild IDD, who go undiag-
nosed. IDD may occur in isolation or in combination with a number of diagnoses or 
impairments, including psychomotor disability, language delay, autism, develop-
mental coordination disorder, ADHD, and other forms of developmental psychopa-
thology including depression, anxiety, psychotic disorders, and somatic conditions. 
Throughout childhood, children with IDD often show various learning difficulties 
(in math, reading, etc.) and neurocognitive difficulties in memory, attention, and 
executive function. Below, we review the various functional domains associated 
with IDD understood to be influenced by perinatal adversities.

Cognitive Disability Intelligence is measured by different conventional psycho-
metric instruments, such as the Kaufman Assessment Battery for Children (Singer 
et  al., 2012), Wechsler intelligence scales (Wechsler, 2014), and Stanford-Binet 
intelligence scales (Roid & Pomplun, 2012), among others, which result in the intel-
ligence quotient (IQ). IQ, measured typically as a standard score with an average of 
100 (standard deviation of 15), allows for comparison of the performance of a child 
with established age-graded norms. IQ tests measure cognitive skills. Although the 
definition of intelligence and the use of psychometric intelligence tests are contro-
versial (Eysenck, 1971; Ganuthula & Sinha, 2019), most psychologists agree that 
intelligence involves a combination of many mental processes to learn from situa-
tions, apply knowledge and skills, and think abstractly. While some research has 
indicated that the age of reaching developmental milestones was associated with IQ 
in later years (Murray et al., 2007), early language skills seem to be more predictive 
of later IQ than other domains (Peyre et al., 2017).

Motor Disabilities A wide range of IDD entails delays or difficulties in gross 
motor functions such as sitting or standing, fine movements such as grabbing an 
object using an index finger and thumb, and general motor coordination necessary 
for complex systematized movements such as walking or running (Biotteau et al., 
2020; Lucas et al., 2016). Rather than a single diagnosis, motor disabilities consti-
tute a large umbrella of disorders, which in early life include cerebral palsy, ataxia, 
tremors, and various tic disorders. Many motor disorders, such as cerebral palsy, are 
thought to arise prior to birth, although diagnosis often does not occur until at least 
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around 6-months of age (Novak et al., 2017). Typically, diagnosis occurs once early 
motor milestones (such as rolling from front to back, sitting independently for brief 
periods, or passing toys from one hand to another) do not develop when expected. 
Early interventions are often thought to be key in mitigating the long-term impacts 
of motor disorders, with earlier intervention yielding more efficacious outcomes 
throughout the lifespan (Hadders-Algra, 2021). For example, premature infants are 
frequently referred for motor interventions prior to formal diagnosis (Spittle 
et al., 2015).

Language and Communication Disabilities Language and communication dis-
abilities represent a broad umbrella of symptoms and disorders that are primarily 
marked by difficulty expressing oneself and can include delays in reaching norma-
tive speech milestones and difficulties engaging in age-appropriate expressive 
 language to the absence of speech entirely (APA, 2013). By the age of 3, it is 
believed that language and communication disabilities affect approximately 6% of 
children (Boyle et al., 1996). Beyond the direct issues associated with communica-
tion difficulties, speech and language disabilities at early ages can often be an early 
indicator of later concerns. Toddlers with language and communication difficulties 
are at greater risk for later developmental concerns including cognitive delays and 
intellectual disabilities (Marrus & Hall 2017), broader social impairments (St Clair 
et  al., 2011), and elevated risk for psychiatric disorders (Snowling et  al., 2006) 
including autism spectrum disorder (Luyster et al., 2007). Using advanced neuroim-
aging techniques, such as electroencephalogram (EEG), magnetic resonance imag-
ing (MRI), and functional near-infrared spectroscopy (fNIRS), neural signatures of 
complex interactions of brain systems have been implicated in language develop-
ment (Kuhl, 2010). These neuroimaging techniques are also used to investigate the 
neural correlates of nonverbal communication skills in infants and children, includ-
ing those with difficulties in nonverbal communication (e.g., interpreting social 
cues, facial expressions; Bayet & Nelson, 2019).

Learning Disabilities Learning disabilities (LDs) with rates that suggest a global 
impact on about 5% of school-aged children, encompass several disorders that 
affect the acquisition, retention, comprehension, or application of verbal and non-
verbal information, and interfere with specific aspects of school achievement 
(Lagae, 2008). The DSM-5 categorizes LDs into three major academic domains: 
reading, writing, and mathematics, with difficulties lasting for at least 6  months 
(APA, 2013). Specific LDs include dyscalculia, dysgraphia, and dyslexia, the latter 
accounting for approximately 80% of LDs (Shaywitz et al., 1998). While IQ may 
correlate with LD, it is important to note that they are separate constructs. LDs can 
mimic or be comorbid with other neurodevelopmental disorders, making it impera-
tive to distinguish symptoms for proper diagnosis. While early detection can be 
challenging, typical detection occurs around third grade, after the child is in the 
academic setting for several years. Family history seems to be the best parameter to 
select those at risk. Once diagnosed, it is essential for the treatment to encompass a 
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collaborative effort, involving the family, school, medical professionals, and psy-
chologists (Cortiella & Horowitz, 2014).

Related Neurodevelopmental Conditions Autism, attention disorders, and 
schizophrenia can co-occur with IDD, implicating various neurological domains 
such as cognitive flexibility, social impairment, attention, memory, and emotion 
regulation. Symptoms emerge over time, due to similar pathways (changes in gray 
and white matter, ventricular enlargement) or distinct pathways and processes that 
are altered during brain development. Associations with perinatal risk are reviewed 
in the section that follows.

Autism IDD frequently co-occur with autism spectrum disorder, which is a perva-
sive developmental condition characterized by impaired communication and social 
interaction as well as restricted, repetitive patterns of behavior, interests, or  activities. 
The term “autism” is used to refer to the autism spectrum, which affects approxi-
mately 1 in 36 children (Maenner et al., 2023). Population-based case- control stud-
ies have provided evidence that autism is related to adverse pregnancy and delivery 
processes (Larsson et al., 2005). While there is an overlap between risk factors for 
ID and autism, not all autistic individuals are also diagnosed with ID. Perinatal risk 
factors implicated in the subsequent development of autism and overlap with IDD 
include the following: Maternal autoimmune and inflammatory disorders are also 
associated with a child receiving an autism diagnosis (Meltzer & van de Water, 
2017; Chen et al., 2016). Premature birth (Allen et al., 2020; Crump et al., 2021) 
and/or low birth weight (Lampi et  al., 2012; Talmi et  al., 2020) are also at an 
increased likelihood for autism; similarly, low APGAR scores at birth have been 
linked to subsequent autism diagnosis (Modabbernia et  al., 2019). Large cohort 
studies have found that advanced maternal and paternal age are independently 
associated with a higher likelihood of offspring receiving an autism diagnosis 
(Sandin et al., 2016). Additionally, recent studies have found a link between a family 
history of psychiatric problems and a subsequent diagnosis of autism in offspring 
(Xie et al., 2019). Taking all these findings together, it is important to explore these 
factors as well as those discussed in this chapter as potential risks for a co- diagnosis 
of autism and IDD.

Attention-Deficit/Hyperactivity Disorder (ADHD) Attention-deficit/hyperactivity 
disorder (ADHD) is characterized as a persistent pattern of inattention and/or 
hyperactivity-impulsivity that interferes with daily functioning or development 
(APA, 2013). Youth diagnosed with ADHD often experience symptoms related to 
deficits in executive function and challenges with behavioral self-regulation (APA, 
2013). While not all children with ADHD have a co-diagnosis of IDD, the same 
perinatal experiences conferring risk for IDD are linked to attention disorders, 
including prenatal stress, exposure to toxicants and teratogens, and maternal mental 
health depression disturbance. These developmentally manifest as symptoms of 
inattention and/or hyperactivity-impulsivity, often in combination with other disor-
ders (Wiggs et al., 2016).
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Schizophrenia Childhood-onset schizophrenia is a psychiatric disorder that affects 
emotions, temperament, and behavior. A child with this disorder has aberrant behav-
ior and emotional manifestations, such as psychotic symptoms (i.e., having strange 
ideas, thoughts, or feelings that are not based on reality; Keepers et  al., 2020). 
Schizophrenia is not typically diagnosed in pediatric populations younger than age 
12. Often, the psychotic symptoms start in adolescence and are more common in 
males earlier in development  (Albert & McCaig, 2015). Schizophrenia is often 
linked to IDD, and they are not mutually inclusive; nonetheless, a schizophrenia 
diagnosis does not necessarily imply an IDD. Schizophrenia is also a consequence 
of genetic and environmental exposure, discussed in this chapter. The causes of 
schizophrenia are well known and include brain pathology, genetics, environmental 
factors, and gene-environmental interactions. The DOHAD model provides robust 
evidence toward a neurodevelopmental model, wherein developmental  complications 
as early as the late first or early second trimester lead to the activation of pathologic 
neural circuits during adolescence or young adulthood (Fatemi & Folsom, 2009).

 Prevention and Intervention

So far, our review has focused on the risk for IDD stemming from multiple adverse 
exposures and experiences. It is equally important to emphasize how positive envi-
ronments or interventions can mitigate risk for IDD and support healthy develop-
ment in the short and long term. Considering the significant neuroplasticity during 
the neonatal period, early interventions prove to be the most effective in mitigating 
potential risk factors for IDD (Cioni et al., 2016). Therapeutic input can range from 
basic application of neuroprotective practices that support brain health during fetal 
and perinatal phases of development, to higher-level nutritional interventions, to 
supporting bonding and reducing stressful separations between caregivers and 
infants around the time of birth. A nonexhaustive list of interventions that will be 
reviewed below includes kangaroo care, nutritional interventions, family-integrated 
care, pain reduction techniques, and medical prevention.

 Medical, Pain Management, and Nutritional Intervention

Invasive Medical Intervention While any infant may receive early medical 
interventions, infants born preterm and those who are term born with genetic or 
congenital disorders are at greater likelihood of receiving both noninvasive and 
invasive medical procedures. For all infants, major interventions such as surgeries 
during the perinatal period can confer significant risks for later neurodevelopment, 
while even noninvasive procedures can confer risk for some infants, such as those 
born preterm.
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For all infants, major invasive procedures are typically only undertaken when it 
is deemed medically essential given the particular vulnerability of long-term 
impacts on later development. For example, infants born with congenital heart dis-
ease are often at risk for serious health outcomes without surgical interventions. 
However, it’s becoming increasingly apparent that receiving those life-saving inter-
ventions often is associated with an elevated risk for later neurodevelopmental 
impairments (Howell et al., 2019). Importantly, this effect is not limited to cardiac 
disorders, as surgical interventions for noncardiac disorders see similar increases in 
neurodevelopmental knock-on effects in childhood (Moran et al., 2019). There are 
many perioperative factors across cardiac and noncardiac disorders that may account 
for these observed differences. First, vulnerability to brain injury remains a persis-
tent concern throughout the perinatal period with surgery often associated with sub-
sequent injury related to hypoxia and inflammation (Abella et al., 2015; Pironkova 
et al., 2017). Moreover, administration of anesthetics during surgery is associated 
with greater apoptosis of nervous system cells and greater risk for neurodevelop-
mental delays (Sanders et al., 2013).

NICU-Based Pain Reduction Techniques Infants born at younger ages often 
experience extended NICU stays and, even among the healthier infants, often expe-
rience repeated exposures to painful events such as heel sticks to collect routine 
blood draws. These can add up quickly; however, very preterm infants can often 
experience over 100 skin break procedures over the standard course of care before 
they are discharged, with some reaching as high as 600 (Carbajal et al., 2008; Cong 
et al., 2017). While these heel sticks, venipuncture, and similar skin break proce-
dures are routine in adults, they may pose a significantly larger risk in younger-born 
preterm infants. Specifically, pain sensation pathways are considered mature by 
20 weeks gestation (Anand & Hickey, 1987; Fitzgerald, 1993), while the pain mod-
ulatory response is not fully developed until after birth and nociceptive blocking 
signaling may not be available until nearing term age (Fitzgerald, 1991). As a result, 
earlier-born infants may be at unique risk of insufficiently moderate pain response. 
Importantly, the relationship between pain exposure and neurodevelopment has 
been consistently observed in preterm infants, with greater exposures associated 
with broad neurodevelopmental impairments during infancy and early childhood 
(Valeri et al., 2015; Vinall et al., 2014).

Pain reduction techniques in the NICU include strategies to minimize the dis-
comfort experienced by premature infants during medical procedures, such as intu-
bation or needle pricks. While these techniques do not directly target IDD, reducing 
pain and stress during the NICU stay may have an indirect effect on long-term 
neurodevelopment. Studies have shown that interventions such as sucrose adminis-
tration or nonpharmacological measures, such as facilitated tucking and gentle 
human touch, can reduce pain and stress in preterm infants (Stevens et al., 2016). 
Extending this finding, one RCT has also shown that skin-to-skin care can reduce 
biobehavioral pain responses in preterm infants (Cong et al., 2011), further support-
ing the idea that skin-to-skin contact may be one of the most effective, nonpharma-
cological pain reduction techniques. In sum, the evidence for a direct link between 
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pain reduction techniques in the NICU and later IDD outcomes is not robust yet, but 
given the promising initial findings, future research is highly encouraged.

NICU-Based Nutritional Interventions NICUs play a pivotal role in providing 
the necessary care for at-risk infants during the perinatal period and are ideal loca-
tions for implementing interventions that can be continued at home (Aucott et al., 
2002; Soleimani et al., 2020). Nutritional interventions in the NICU and following 
discharge from the hospital aim to optimize the overall health of preterm infants by 
ensuring adequate nutrition through parenteral and enteral feeding. Although breast-
feeding may lead to slower weight gain in preterm infants than when receiving 
formula, breastfeeding has been associated with reduced risk for poor neurodevel-
opmental outcomes and better odds for a larger head circumference at 6 months and 
2 and 5 years of age (Rozé et al., 2012). Correlational research also suggests that 
breastfeeding may reduce the risk of certain developmental disorders, such as 
autism spectrum disorders (Xiang et al., 2023) and attention-deficit/hyperactivity 
disorder (Oddy et al., 2010). While these interventions are essential for neonatal 
survival and growth, more evidence is needed to measure the impact on reducing 
developmental and intellectual disability risk.

Medical Treatments as Prevention Medical prevention and interventions are 
commonly provided in NICUs for respiratory support and infection management to 
promote infant survival and long-term health (Ho et al., 2023). Effective respiratory 
support can reduce the risk of brain injury and improve neurodevelopmental out-
comes in at-risk infants (Polin & Sahni, 2017). For instance, surfactant therapy is 
commonly used to treat respiratory distress syndrome in preterm infants, as it 
improves lung function and oxygenation while simultaneously reducing the risk of 
hypoxia-related brain injury and improving neurodevelopmental outcomes (Polin & 
Sahni, 2017). Other medical interventions focus on neuroprotection, by minimizing 
brain injury and improving long-term neurodevelopmental outcomes with medica-
tions, including caffeine citrate for apnea of prematurity (Schmidt & Davis, 2016). 
Such interventions have the potential to indirectly reduce risk for IDD, but their 
causal effects are yet to be fully understood.

 Maternal-Fetal Dyadic Interventions

Family-based prevention and intervention programs prior to birth and in the NICU 
not only contribute to the overall well-being of the infant but also empower parents 
to become active participants in their children’s care and development. These inter-
ventions can help reduce the risk of developmental disorders by creating a support-
ive, nurturing, and cognitively stimulating environment for infants. We discuss two 
examples below.

Kangaroo Care Kangaroo care (KC), also known as skin-to-skin care, involves 
placing the infant on their parents’ chest in a diaper and a hat, maximizing skin-to- 
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skin contact. Randomized controlled trials (RCT) suggest that KC has causal ben-
efits for infant neurocognitive health. For example, El-Farrash et al. (2020) found 
that KC causally improves infant attention and regulation, lowers scores on leth-
argy, and reduces nonoptimal reflexes. Moreover, a 20-year follow-up of an RCT 
conducted by Charpak et al. (2017) showed that KC significantly reduced the risk of 
neurodevelopmental disabilities among young adults who were born preterm. The 
study found sustained positive effects of KC on cognitive and motor outcomes com-
pared to the traditional incubator care group. Correlational work also suggests that 
KC is associated with better emotional bonding between the parent and the infant, 
which may have an indirect positive impact on infants’ cognitive development 
(Feldman et al., 2002), reduces infant stress hormone levels, lowers maternal post-
partum depression (Cristóbal Cañadas et al., 2022), improves cognitive control, and 
enhances autonomic nervous system functioning (Feldman et al., 2014). Finally, a 
meta-analysis by Conde-Agudelo and colleagues (2011) found a positive impact of 
KC on developmental outcomes, and a recent systematic review by Boundy et al. 
(2016) suggested reduced incidence of sepsis, improved weight gain, and enhanced 
neurodevelopmental outcomes in preterm infants who received KC. The strength of 
evidence for KC’s impact on reducing IDD risk is substantial, making it a corner-
stone intervention in the NICU.

Attachment-Based Interventions One such early parenting program is the modi-
fied Attachment and Biobehavioral Catch-up (mABC), which was developed for 
low-income mothers who are dependent on opioids (Labella et  al., 2021). 
Intervention sessions begin during the third trimester when parent coaches support 
mothers in preparing for anticipated challenges, such as caring for their infants who 
may be challenging to soothe while remaining sensitive and nurturing to the infant. 
mABC parenting program sessions continue throughout the first 6–12 months of the 
infant’s life. Recent evidence from an RCT suggests that ABC causally enhances 
opioid-exposed infants’ autonomic nervous system functioning (Tabachnick et al., 
2022) and high-risk children’s long-term executive functioning (Korom et al., 2021; 
Lind et al., 2017).

In addition to ABC, a recent systematic review by McAndrew and colleagues 
(2022) reviewed 19 NICU-based studies, all involving family-focused interventions 
that actively engaged families in some aspect of patient care in intensive care units. 
Although no physiological differences were observed between control and interven-
tion groups, those receiving family-based interventions showed higher weight, 
shorter NICU stay, and increased alertness and total wakefulness time compared to 
the control group. Parents in the intervention group also endorsed reduced stress 
and lower respiratory rates when interacting with their vulnerable infants than par-
ents in the control group. Although family-based interventions are a promising 
avenue for mitigating the risk for IDD, additional investigation into the effective-
ness of interventions that involve family participation is needed.
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 Postnatal Follow-Up Care

Interventions that are currently being implemented through early intervention in the 
United States encompass many developmental areas, such as language, motor, and 
cognition. While the origins and principles guiding these interventions are develop-
mentally sound, it is important to remember the developmental considerations for 
each individual with IDD and other co-occurring conditions. The most common 
interventions and services provided are occupational (adaptive, sensory, fine motor), 
physical (gross motor, limbic), and speech-language therapy, as well as special 
instruction and applied behavioral analysis, which uses behavioral psychology to 
teach skills acquisition through natural reinforcement. The field has shifted to 
implement Naturalistic Developmental Behavioral Interventions (NDBI), which are 
implemented in the individual’s known environment (often the home), “involve 
shared control between child and therapist, utilize natural contingencies, and use a 
variety of behavioral strategies to teach developmentally appropriate and prerequi-
site skills” (Schreibman et al., 2015). Other important strategies during early child-
hood include parenting interventions which have the potential to alleviate stress in 
the household, empower parents, and teach parents how to play with infants in cog-
nitively stimulating ways. These strategies may alter the course of symptoms and 
improve the well-being of the family members caring for a child with an IDD 
(Vanegas et al., 2022).

 Integrative Summary, Implications for Policy, 
and Future Directions

This section will provide an integrative summary of our review, with the goal of 
highlighting key directions for research, prevention, practice, and policy. First, as 
reviewed in part one of our chapter, IDD may result from a broad number of envi-
ronmental, experiential, and nongenetic risk factors during the perinatal period of 
human brain development. Adverse exposures can occur antenatally, influencing 
fetal brain development, and separately or in combination with risk that are encoun-
tered perinatally, related to severe premature birth, anoxia or hypoxia, and be cor-
related with low APGAR scores and low birth weight or poor growth. Effects of 
perinatal exposures can be compounded by social and caregiving stressors experi-
enced while infants are cared for in the NICU and throughout later infancy. For this 
reason, perinatal risk factors may be better understood as increasing initial risk or 
perturbation in fetal and infant brain development that may set the infant on a trajec-
tory of risk that is exacerbated by additional challenges encountered following 
birth. Timing of exposures and severity of both risk and protective factors are there-
fore essential for understanding the likelihood of risk for IDD.

Part two of this chapter focused on defining the phenotype associated with IDD 
risk. IDD involves a constellation of delays across various cognitive, memory, and 
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learning domains and is often accompanied by additional syndromes and disorders, 
including autism, and ADHD. Much of the existing work has attempted to connect 
various perinatal exposures with late emerging latent or categorically defined IDD 
risk. As heterogeneity and comorbidity are the norm rather than the exception, prog-
ress in delineating etiological pathways may stem from more carefully considering 
developmental trajectories of specific neurocognitive processes that are measurable 
in newborns and infants (such as including development of processing speed, visual 
attention, working memory, attention, inhibition, cognitive flexibility, and social or 
emotional processing, attention to faces) and, over time, contribute to the develop-
ment of more complex syndromes, such as IDD and related disorders later in life. In 
this sense, our field may need to place more focus on the developmental aspect of 
IDD in order to fully understand how to support individual pathways toward resil-
iency. As covered in our review, work must also consider the role of caregiving 
experiences, cultural factors, and additional environmental or systemic hazards will 
be essential for mitigating ongoing risk.

Considering the timing of exposures is also key for future work, given emerging 
evidence that the effects of some exposures are timing dependent. Advances in fetal 
and infant neuroimaging may offer new insight into how the impact of any given 
exposures may depend on the timing or extent to which it disrupts the dominant 
processes at that stage of central nervous system development (ranging from disrup-
tions in neurogenesis to neural migration, to neuronal differentiation, to axonogen-
esis, to synaptogenesis, followed by normative apoptosis and pruning of excessive 
synapses through the first years of life; Linderkamp et al. (2009)). For example, 
certain exposures (brain insults) may have formative and severe influences if they 
occur early and disrupt the formation of the CNS, potentially leading to profound 
IDD risk. However, interruptions in synaptic remodeling at later stages of fetal and 
infant brain development may be more likely to impair neuronal networks that sup-
port ongoing memory, attention, and learning. With supportive caregiving over the 
subsequent periods of postnatal development, impacts of the perinatal exposures on 
risk for IDD may be more attenuated or mild.

It has long been appreciated that perinatal risk factors are not randomly distrib-
uted, but instead are stratified across the population, with the greatest burden of risk 
for more marginalized or impoverished families. Large-scale neuroimaging studies 
have drawn connections between perinatal risk and longer-term brain and cognitive 
delays and have revealed that effects may be exacerbated by lower socioeconomic 
status (Alnaes et al., 2020), pointing to the need for more progress in improved 
screening, detection, and prevention for marginalized populations. For example, 
infants with multiple significant pre- and perinatal risk factors can be offered addi-
tional follow-up or services even if they do not display overt clinical symptoms. 
Education to parents on early warning signs of IDD or other neurodevelopmental 
disorders can be offered prior to hospital discharge and at ongoing infant wellness 
checks. Preventative home visits that support cognitive stimulation and caregiver 
responsiveness can be offered to support families and reduce risk for compounding 
adversities that enhance IDD risk in toddlerhood and preschool years. As we 
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reviewed in part 3, there are a multitude of existing intervention and prevention 
programs that aim to reduce risk for IDD. Training hospital professionals to inte-
grate ongoing educational and prevention strategies onto existing medical or pre-
ventative treatments may maximally support feasibility and implementation.

It is important to note that social-environmental factors are complex and multidi-
mensional and include education, occupation, household income, and material 
resources but also factors such as parental psychosocial stress, parenting style, and 
a cognitively stimulating home environment which may all impact child develop-
ment. To develop effective interventions and public policies that more equitably 
reduce risk for IDD, further studies are needed to understand the specific mecha-
nisms through which social-environmental factors impact neurodevelopment. The 
effects of specific social adversities and early life stress on brain development and 
neurocognition can be studied in animal models; these are difficult to control in 
human studies given the complex intersections between these factors (Hackman 
et al., 2010). For example, postnatally, chronic stress during pregnancy in rodents 
may result in altered mother-infant interactions including a decrease in the fre-
quency of licking and grooming behaviors of rat pups. These rat pups who are 
exposed to fewer licking and grooming behaviors have decreased NMDA receptor 
levels and expression of growth factors in the hippocampus which results in 
decreased synaptic formation and cognitive performance (Liu et  al., 2000). This 
may provide some insight into the neural basis of parenting interventions, which 
have been shown to be effective in modifying neurodevelopmental outcomes in 
children including those with brain injury and IDD. In rodent models, environmen-
tal enrichment (Rosenzweig et al., 1978) results in increased neurogenesis, gliogen-
esis, and synapse formation in the hippocampus and cortex as well as improved 
memory and learning (Kempermann et al., 1997; Rampon et al., 2000; Van Praag 
et  al., 2000). These findings complement those of human studies observing the 
importance of a cognitively stimulating environment on neurodevelopmental out-
comes, providing a mechanism through which interventional programs reduce IDD 
risk and enhance long-term educational success and employability. Human clinical 
trials of social and parenting interventions involving randomized trials are the gold 
standard approach for establishing causation in humans. Results from such trials 
should be leveraged to guide policy changes, with the strongest effects for reducing 
IDD and comorbidities in at-risk families. Interestingly, a recent randomized con-
trol trial is testing the impact of improved financial support to impoverished families 
(based on the provision of monthly lower or higher levels of unconditional cash 
transfers) can improve early life brain function and psychosocial outcomes (Noble 
et al., 2021). They found that infants in the high-cash group showed more power in 
high-frequency bands on EEG, which has been previously associated with higher 
language and cognitive scores in other studies (Benasich et  al., 2008; Williams 
et al., 2012). Longitudinal follow-up of this cohort is ongoing and will provide fur-
ther insight into whether these alterations in the brain persist over time (Noble et al., 
2021; Troller-Renfree et al., 2022).
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 Closing Summary

IDD can arise from genetic or nongenetic causes and encompass a range of neuro-
developmental disorders. The relatively high prevalence of IDD motivates the 
search for potential mechanisms and exposures during the perinatal period that can 
cause an IDD. Perinatal exposures known to increase risk for IDD in later childhood 
include medical exposures (perinatal brain injury, infection, and prematurity), envi-
ronmental exposures (chemical exposure, environmental hazards known to under-
mine brain development, such as lead exposure, cigarette smoke, polluted air, and 
pesticides), and social adversities (maternal-infant separation in the NICU, and 
maternal mental health affecting bonding and responsiveness). As these adversities 
often co-occur, disentangling their individual versus interactive developmental 
effects is difficult. Postnatal neural plasticity and environmental supports have the 
potential to buffer relations between environmental insults and offspring brain 
development, potentially reducing later risk for IDD.

The extant literature reviewed here provides an overall understanding of the 
causes of IDD.  Yet, more research is needed to understand its mechanisms and 
improve treatment or intervention options, including for co-occurring conditions. 
Progress on this front will inform expanded continuity of care and help close the gap 
on discontinuity, by implementing interdisciplinary approaches across all medical 
and clinical disciplines to support both the parent and child. Early intervention and 
services are critical to deliver positive outcomes in later child development. Yet, we 
need to consider the development trajectory of the child and the potential need for 
lifelong services, which currently arguably lack in resources given the structural 
barriers. Thus, future research should not only investigate the neural pathways and 
systems implicated in IDD but also critically examine ways to maximize the sys-
tematic implementation of relevant intervention programs in a variety of settings, 
thereby informing policy and improving access.
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