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Highlights 

 

 Fetal, infant, and toddler imaging was mobilized in the early 1980s. 

 Developments and challenges in the fetal MRI parallel those in infants & toddlers.  

 In the 2000s, there was an explosion of research interest in this field.  

 Fetal, Infant, and Toddler Neuroimaging Group (FIT‟NG) is a new academic society.  

 FIT‟NG provides a forum to address ongoing challenges in the field.  
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Abstract 

Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern 

times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI 

technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and 

toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this 

fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, 

highlighting the early studies that set the stage for modern advances in imaging during this developmental 

period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field 

today. Lastly, we consider the growing pains of the community and the need for an academic society that 

bridges expertise in developmental neuroscience, clinical science, as well as computational and 

biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad 

(especially during pregnancy), data quality, and image processing tools that are created, rather than 

adapted, for the young brain. 

 

 

Keywords: MRI, fMRI, FIT‟NG, infant neuroimaging, fetal neuroimaging, brain development, 

longitudinal studies 
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1. Introduction 

Research in fetal, infant, and toddler neuroimaging has steadily increased from an average of 160 

publications per year during the 1990‟s, to roughly 530 in 2021. In a period of heightened scientific 

interest and rapid technological advancements in neuroimaging in early life, it is timely to review how 

magnetic resonance imaging (MRI) became a tool to study the developing brain. Few may realize that the 

field of fetal, infant, and toddler neuroimaging first emerged in the 1980s—shortly after the development 

of MRI. Since that time, we have learned an enormous amount about brain development. This review 

chronicles the parallel developments in the fields of fetal, infant, and toddler neuroimaging (noting a shift 

from clinical to research use) and the resolved and ongoing challenges in this fast-growing 

interdisciplinary field. We highlight several key advances in the field to illustrate how early developments 

both in MRI technology and basic research laid the groundwork for modern advances in early childhood 

imaging. We also highlight the major large-scale multi-site studies, key findings, and technological 

advancements that ultimately led to the explosion of interest in the field today and propelled our 

understanding of the early development of the human brain. Lastly, we consider the growing pains of the 

community and the need for a society that bridges expertise in developmental neuroscience, clinical 

science, and computational and biomedical engineering to ensure special consideration of the vulnerable 

mother-offspring dyad, data quality, and image processing tools.  

In doing so, we introduce a new academic society, the Fetal, Infant, and Toddler Neuroimaging 

Group (FIT‟NG), which aims to bring researchers together whose work share the common goal of 

expanding our understanding of neurodevelopment during the first years of life. While the fetal period 

through toddlerhood is a large age range, cognitive development during this time is both formative and 

rapid. As such, an understanding of developmental milestones within this window is essential to 

advancing developmental science. FIT‟NG is building a community for networking and collaborative 

endeavors and a platform for software and hardware developers (e.g., engineers, programmers, and 

physicists) and end users of the tools (e.g., psychologists, psychiatrists, neonatologists, neuroscientists) to 

engage in constructive discussions related to technological and methodological gaps in our knowledge. 
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Such gaps are inherent to working with such young and vulnerable populations and require collaborative 

effort to be filled. Together, this manuscript reviews the history and accomplishments of the field of fetal, 

infant, and toddler neuroimaging (using MRI) during the past 40 years and the role that FIT‟NG aims to 

play in its advancement in the upcoming years. 

2. Historical Context: A brief history of MRI 

MRI is a non-invasive imaging modality that was invented in the 20th century (Lauterbur, 1973; 

Mansfield & Maudsley, 1977) and is widely used today for the study of the human body. At least six 

Nobel prizes between 1943 and 2003 were awarded to scientists for their groundbreaking work that led to 

the invention of MRI as we know it today. However, just as with any new area of research, many practical 

and technical challenges in the early years existed. The first MRI machine, named „Indomitable‟ 

(Kleinfield, 2014), regularly leaked liquid helium and was too small to fit the first participant. It was only 

after several iterations of refinement that Indomitable produced the first image of a human chest; at this 

time, it took five hours to acquire an image (Damadian et al., 1977). In 1980, several publications 

demonstrated the feasibility of brain imaging in adults (Hawkes et al., 1980; Holland, Hawkes, et al., 

1980; Holland, Moore, et al., 1980). The first infant and fetal brain scans would not be documented until 

1982 and 1983, respectively (Levene et al., 1982; Smith et al., 1983). In 1984, following technological 

improvements, the Food and Drug Administration (FDA) approved the use of MRI for human imaging in 

the United States. Since then, MRI has become popular in both clinical and research settings. In 1995 

there were 2,785 MRI units in the United States (OECD, 2021). Today, there are approximately 13,278 

MRI scanners, with approximately 42 million scans being performed annually in the United States alone 

(OECD, 2019, 2021). 

As accessibility to MRI increased, the images that were acquired also evolved. The earliest scans 

(in the 1980s) were largely structural and used to examine the anatomy and pathology of the brain. Soon, 

the advances in echo-planar imaging brought forth other neuroimaging modalities. Functional magnetic 

resonance imaging (fMRI) was developed in 1990 (Ogawa et al., 1990). fMRI measures changes in the 

spatiotemporal distribution of neural system physiology by measuring the blood oxygen level dependent 
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(BOLD) signal (Anderson & Thomason, 2013). By 1992, it was clear that the BOLD signal could be used 

as an indirect measure of neural activity (Kwong et al., 1992). Also in the 1990‟s, a new technique called 

diffusion weighted imaging (dMRI) emerged (Basser et al., 1994). Since water diffusion varies with the 

brain tissue microstructure, dMRI combined with tractography uses the anisotropic property of diffusion 

in a white matter axonal bundle to estimate the organization of connections (Huang, 2010; Kasprian et al., 

2008). These advancements in MRI data acquisition laid the foundation for the field of fetal, infant, and 

toddler neuroimaging. (See Figure 1 for timeline of key developments in fetal, infant and toddler 

neuroimaging). 

3. Fetal MRI 

3.1. The early years (1980s) 

Fetal MRI was driven in large part by a clinical demand. The first report documenting imaging of 

fetuses and pregnant women was in 1983 (Smith et al., 1983; Smith et al., 1984). At the time, there was 

insufficient information regarding the safety1 of this new technology for pregnant women and fetuses. 

Consequently, much of the research at this time was aimed at demonstrating the feasibility of this method 

and comparing the output of structural MRI to ultrasound. During most of the 1980s, MRI was used in 

pregnant women to evaluate maternal anatomy and pathology (McCarthy, Stark, et al., 1985; Weinreb et 

al., 1985), and fetal anatomy (Daffos et al., 1988; McCarthy, Filly, et al., 1985). Particularly there was a 

need for defining congenital anomaly of the brain and early brain injury in the fetal period (Menticoglou 

et al., 1989; Sims et al., 1985). 

3.2. Maturation of sequences to improve structural MRI (1990s) 

By the 1990s, the use of MRI during pregnancy had increased substantially and was used as a 

complement to ultrasound when findings were not definitive (Girard et al., 1993), demonstrating its utility 

in certain clinical cases (Angtuaco et al., 1992). While providing unprecedented visual access to the 

                                                            
1 For further discussion of MRI safety see: Garel & Brisse, 1998; Tocchio et al., 2015; Welsh et al., 2011 
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developing fetus, image quality was distorted by fetal movements and the mother's breathing movements. 

To reduce fetal movement, various pharmacological methods (e.g., neuromuscular blocking agents) were 

introduced to sedate either the mother and/or fetus (Daffos et al., 1988; Girard et al., 1993; Horvath & 

Seeds, 1989; Yuh et al., 1994). These techniques may pose risks for the fetus and pregnant women (e.g., 

Garel & Grisse, 1998), limiting them to clinically necessary scans, and necessitating the development of 

new data acquisition strategies to allow for research data collection in this vulnerable population.  

In the 1990s, new sequences, such as the single-shot rapid acquisition sequence with refocused 

echoes (HASTE), were developed (Tsuchiya et al., 1996; Yamashita et al., 1997). These new faster 

sequences reduced acquisition times to less than a second and propelled fetal MRI research forward. With 

the ability to visualize fetal anomalies with high contrast and precision (Coakley et al., 1999; Garel & 

Brisse, 1998; Hubbard et al., 1999; Levine et al., 1997, 1998, 1999; Sonigo et al., 1998), and to estimate 

fetal brain volumes (Gong et al., 1998), MRI was recognized as having superior accuracy (relative to 

ultrasound) in identifying fetal anomalies (Bilaniuk, 1999; Sonigo et al., 1998). Nevertheless, even with 

the advent of more rapid sequences, fetal and maternal movement remains an ongoing challenge and a 

number of clinical investigators continued using invasive pharmacological methods to reduce fetal 

activity until the end of the 1990s2 (Resta et al., 1998).  

3.3 Emergence of echo-planar imaging in fetuses (2000-2010s) 

While structural MRI studies of fetuses flourished in the 1980s and 1990s, it would not be until 

the early 2000s that fMRI and dMRI studies in fetuses were published. In 1999, Hykin and colleagues 

performed the first fetal fMRI study (Hykin et al., 1999). This work provided evidence of fetal brain 

activity in utero, in response to an auditory stimulus, which was later replicated in a larger sample (Moore 

et al., 2001). Forthcoming task-based fMRI studies in fetuses assessed brain responses to visual stimuli 

(i.e., a light source shone at the maternal abdomen; Fulford et al., 2003) and vibroacoustic stimuli 

(Fulford et al., 2004). Similarly, maternal speech has shown evidence for cortical sensory activation at the 

                                                            
2
 Although not the majority, some groups continue to use sedation today.  
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beginning of the third trimester (Jardri et al., 2012) and maternal singing has shown activation of the fetal 

auditory network and Heschl‟s gyrus (Goldberg et al., 2020) . These study designs were later combined 

with exciting developments in the analysis capabilities with fetal fMRI data including methods for 

automatic brain extraction, segmentation, registration, and reconstruction of the moving fetal brain 

(Caldairou et al., 2011; Keraudren et al., 2014; K. Kim, Habas, Rousseau, Glenn, Barkovich, & 

Studholme, 2010; Kuklisova-Murgasova et al., 2012; Rousseau et al., 2016; Seshamani et al., 2014, 2013; 

You et al., 2016). While challenges exist (see Dunn et al., 2015 for a review), these foundational studies 

have allowed for deeper interrogation of the intrinsic functional connectivity of the fetal brain.  

After these early task fMRI studies in fetuses, many fMRI researchers shifted their focus to 

functional connectivity—functionally integrated association between the BOLD time courses of spatially 

distinct brain regions—collected in the absence of external structured stimuli (i.e., during “resting state”). 

While a variety of phenotypic information are thought to stem from patterns of functional connectivity 

(Liao et al., 2017), it was not until 2012 that researchers discovered that resting state networks are 

detectable in utero (Schöpf et al., 2012). Subsequent longitudinal studies demonstrated that the proximal 

and distal connections between different brain networks form over the second half of the pregnancy and 

peak between 27 and 30 weeks (Jakab et al., 2014). These foundational studies provided key insight into 

the organization and development of fetal brain networks.  

The 2000s were also characterized by expansion of structural imaging as fetal dMRI began to 

emerge. This modality revealed new details about the microstructural changes that occur in fetal brain 

development (Huang, 2010; Jakab et al., 2017). Critically, this work was made possible by concurrent 

advancements in dMRI sequence development. dMRI studies are especially sensitive to motion (both 

from the mother and fetus). Thus, this work relied heavily on work that shortened dMRI scan times (Kim 

et al., 2008; Norris & Driesel, 2001; for review see Studholme, 2011).   

3.4 Current trends  

Several trends have emerged in fetal imaging that are currently shaping the focus of the field. 

Here we highlight a few of them.  
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Brain development from the second to third trimester. Recent work has continued to utilize fetal 

MRI to characterize brain development over the course of pregnancy (Dubois, Dehaene-Lambertz, et al., 

2014; Khan et al., 2019; Wilson et al., 2021), providing new insights into brain development prior to 

birth. Fetal MRI has also been used for gestational-age equivalent controls for preterm infants (Bouyssi-

Kobar et al., 2016; De Asis-Cruz, Kapse, et al., 2020; Khan et al., 2019) . In large part, this work has been 

made possible by new methodological advancements in MRI acquisition techniques and analysis 

pipelines (Fogtmann et al., 2014; Kim, Habas, Rousseau, Glenn, Barkovich, Koob, et al., 2010; Marami et 

al., 2017; Pontabry et al., 2017; Rutherford et al., 2021; Seshamani et al., 2013). 

Predicting postnatal development. Recently, fetal MRI has been used to predict postnatal 

development (van den Heuvel & Thomason, 2016). This includes pinpointing patterns of brain 

development in the fetus in association with both typical behaviors, such as motor development (Schöpf 

et al., 2014; Thomason et al., 2018) and atypical outcomes, such as autism spectrum disorder (Hulshof et 

al., 2021; Sanz-Cortes et al., 2014; Villa et al., 2021). For example, recent work has identified in utero 

markers of preterm birth (Story et al., 2021; Thomason et al., 2017)—including reduced connectivity in 

cortical regions associated with language and reduced cerebrospinal fluid and cerebral cortex volume. 

However, at present, predicting clinically relevant, long-term individual outcomes from fetal MRI data 

remains unreliable and requires further refinement (Hart et al., 2020).   

Prenatal exposures/maternal factors. Several lines of work have also begun to explore how 

maternal factors and prenatal exposures (e.g., maternal anxiety, obesity, stress, and toxins such as alcohol) 

shape fetal brain development (De Asis-Cruz, Krishnamurthy, et al., 2020; Norr et al., 2021; van den 

Heuvel et al., 2021). This work has begun to pinpoint the factors that influence brain development before 

birth. 

In sum, while the field of fetal MRI has faced several challenges such as lack of fetal-specific 

computational pipelines and hardware (Serai et al., 2013), and no uniform best practices for data 

acquisition, harmonization, and integration, it has provided us with unprecedented access to investigate 

the developing brain in utero and has demonstrated the potential for important clinical applications. 
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4. Infant and toddler MRI 

4.1. The early years (1980s) 

Like fetal MRI, much of the infant and toddler MRI, in the early 1980s, was driven by clinical 

need, often focused on individuals with brain injury (often in preterm infants). Although studies during 

this time often included participants between birth and 5 years of age in a single group, this work 

provided proof-of-concept that MRI was safe to use in infants and children (Smith, 1983) and could be 

used to measure many aspects of brain injury (Johnson et al., 1983; Levene et al., 1982; McArdle, 

Richardson, Hayden, et al., 1987; McArdle, Richardson, Nicholas, et al., 1987). Thus, just as for fetal 

MRI, infant and toddler MRI research began in the 1980s with early work focused on the use of MRI in a 

clinical context and demonstrating safety of the technology. 

4.2. Larger studies focusing on infancy (late 1980s-1990s) 

In the latter half of the 1980s and into the 1990s, with safety established and increased 

accessibility to scanners, the field shifted towards narrower age ranges and larger sample sizes (up to 160 

infants in some cases). For example, with sample sizes of 90 newborns, scientists were able to document 

variation in white matter maturation (Barkovich et al., 1988). During this time, forerunner scientists also 

began to understand how early brain injury corresponded to later developmental outcomes (Barkovich et 

al., 1998; Lago et al., 1995; Mercuri, Guzzetta, et al., 1999; Mercuri, Rutherford, et al., 1999; Robertson 

et al., 1999; M. A. Rutherford et al., 1991, 1998), more than twenty years before similar studies with fetal 

MRI. Again, several studies of preterm infants paved the way to understanding the development of white 

matter microstructure (Fujii et al., 1993; Hüppi, Warfield, et al., 1998; Hüppi, Maier, et al., 1998; 

McArdle, Richardson, Nicholas, et al., 1987; Sie et al., 1997) and associations between the brain and 

cognitive outcomes (Hüppi et al., 1996; Pike et al., 1994).  

4.3. Emergence of an independent research field (2000-2010s)         

 In the early 2000s, several notable research trends emerged that helped to establish the potential 

of this exciting field.   
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Beginning of longitudinal cohorts Most infant and toddler neuroimaging work before the 2000s 

relied on cross-sectional imaging (Gilmore, Lin, Prastawa, et al., 2007; Gilmore, Lin, Corouge, et al., 

2007; Lin et al., 2008). However, the need for longitudinal cohorts with imaging at multiple time points to 

truly assess developmental trajectories soon became clear (Dyet et al., 2006). Some were successful at 

building large longitudinal cohort studies starting in infancy at a single site (Gilmore et al., 2006; Inder et 

al., 1999; Inder et al., 1999; Looney et al., 2007; Maalouf et al., 1999), while others combined their 

resources to build collaborative cohorts across institutes (e.g., the Newborn Individualized Developmental 

Care and Assessment Program (NIDCAP; Als et al., 2004; Mewes et al., 2006) and the Infant Brain 

Imaging Study (IBIS; https://autismbabybrain.com/infant/; Wolff et al., 2012). Together, these studies 

demonstrated robust growth of the human brain in the first two years of life (Garcia et al., 2018; 

Knickmeyer et al., 2008), and highlighted alterations in growth trajectories that are associated with 

neurodevelopmental risk (Gao et al., 2009; Gilmore, Lin, Prastawa, et al., 2007; Hazlett et al., 2011, 2017; 

Kapellou et al., 2006; Shen et al., 2013). 

These early collaborations set the stage for funding agencies, such as the National Institutes of 

Health (NIH) to initiate large-scale studies of early human brain development that assembled consortiums 

across research institutions. The NIH MRI Study of Normal Brain Development was, to our knowledge, 

the first large-scale longitudinal MRI study conducted with healthy infants and toddlers (Almli et al., 

2007; Evans, 2006; Sanchez et al., 2012). This seven-year study enrolled over 500 children (across 6 

U.S.-based institutions), including over 100 children between birth and 4 years of age. The goal was to 

establish a database of healthy MRI data from the first few years of life that could be used as a standard 

for identifying pathologies (Sanchez et al., 2012). 

Infant MRI to identify risk for neurodevelopmental disorders. In the 2000s, researchers also 

began to use infant MRI to identify early markers of risk for neurodevelopmental disorders (e.g., autism 

spectrum disorder, developmental dyslexia). Early structural MRI studies compared brain morphometry 

of infants and toddlers with and without neurodevelopmental disorders (Courchesne et al., 2001; Hazlett 

et al., 2005; Sparks et al., 2002). However, in the mid- 2000s there was a shift toward measuring brain 
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changes before behavioral symptoms of impairment emerged (Gilmore et al., 2010; Hüppi & Dubois, 

2006; Krishnan et al., 2007; Langer et al., 2017; Peterson, 2000; Sylvester et al., 2018; Woodward et al., 

2006).  

Emergence of infant and toddler resting-state fMRI Just as fetal fMRI experienced a rapid 

expansion in the 2000s, so too did infant and toddler fMRI; though, infant and toddler fMRI studies 

predated those in fetuses by approximately four years. Early resting state fMRI studies in preterm infants 

have been the long-time workhorse in infant imaging and have taught us a great deal about the brain. For 

example, some of the earliest studies indicating that the BOLD signal can be reliably identified in infants 

and is similar to that found in adults were originally conducted in preterm cohorts (Arichi et al., 2010; 

Fransson et al., 2007; Heep et al., 2009). These findings were replicated in healthy full-term infants 

(Fransson et al., 2009; Gao et al., 2009; Smyser & Neil, 2015). Pivotal findings identified that while most 

resting state networks are found in infancy, preterm infants exhibited immature forms of some adult 

resting state networks (Smyser et al., 2010); suggesting that the last trimester of gestation shapes network 

development (Damaraju et al., 2010; Doria et al., 2010). Disruption to brain networks in infants from the 

neonatal intensive care unit at term-equivalent age has been found to be predictive of developmental 

impairment (Linke et al., 2018). To date, studies on preterm infants make up roughly one third of all 

infant imaging research (Cabez et al., 2019; Hüppi et al., 1996; Krishnan et al., 2007; Peterson, 2000; 

Rogers et al., 2017; Woodward et al., 2006).  

Emergence of infant and toddler dMRI. Over the course of the 2000s, there were parallel 

developments in dMRI mapping postnatal white matter development (Counsell et al., 2003; Dubois et al., 

2006; Hüppi et al., 2001; Hüppi & Dubois, 2006; Krishnan et al., 2007). Early dMRI work focused on 

feasibility of acquisition and analysis—often focusing on preterm samples (Berman et al., 2005; Maas et 

al., 2004; Partridge et al., 2005) and those with brain damage (Agid et al., 2006; Baldoli et al., 2002). This 

initial feasibility work led the way for research characterizing white matter maturation in typically 

developing samples (Bui et al., 2006; Dubois et al., 2006; Hüppi & Dubois, 2006; Kasprian et al., 

2008).While some similarities exist in the methods for acquisition and post-processing analysis of infant 

Jo
ur

na
l P

re
-p

ro
of



History of FIT‟NG 

14 

 

versus toddler dMRI, differences in the tissue maturation, with low white matter myelination, have 

required several methodological advancements that are age-specific. The development of these tools has 

been essential to the growth of this area of research (Bastiani et al., 2019; Dubois, Kulikova, et al., 2014; 

Hutter et al., 2018; Tournier et al., 2020). 

4.4. Current trends 

 Currently, there are several research trends have received increased attention by researchers and 

funding agencies alike. These approaches aim to improve data acquisition and to establish 

developmentally sensitive markers for identifying those most at risk of developing illness.   

Infant specific equipment. Historically, MRI technology was not designed for use in these 

populations and thus there were major challenges (and still are in many places) regarding access and 

acquisition quality. These challenges have historically made it difficult to engage manufacturers in 

discussions about improving these issues. However, recently several key advancements have been made 

from a technology standpoint. In 2017, the United States FDA cleared the first neonatal intensive care 

unit (NICU) MRI—installed at Brigham and Women‟s Hospital in the United States (Partners Healthcare, 

2018). This regulatory clearance facilitated growth in the development of infant specific hardware 

including the development of the Embrace ® MRI System (Rona et al., 2010), a neonatal MRI machine 

used directly in their NICU, and infant size-adaptive head coils (Ghotra et al., 2021; Hughes et al., 2017). 

These new technologies make conducting infant/toddler MRIs more accessible and improve data quality.   

Task-based fMRI in infants and toddlers. Renewed interest in task-based fMRI, both in sleeping 

(Adam-Darque et al., 2018; Allievi et al., 2016; Dall‟Orso et al., 2018, 2021; Graham et al., 2013; 

Sylvester et al., 2021; Wild et al., 2017) and awake infants and toddlers (Baxter et al., 2019, 2021; Biagi 

et al., 2015; Deen et al., 2017; Ellis et al., 2021), has expanded the early work of Dehaene-Lambertz and 

others (Anderson et al., 2001; Arichi et al., 2012; Dehaene-Lambertz, 2002; Dehaene-Lambertz et al., 

2006). This area of research has been one of the slowest to progress, with many investigators paving the 

way by spending years refining protocols to optimize infant comfort during MRI scans (Raschle et al., 

2012).     
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Open-source datasets and tools. With an increasing interest in early intervention and prediction 

of future developmental outcomes, the need for larger sample sizes combined with longitudinal imaging 

through early childhood to identify age-specific versus persistent brain markers of emerging risk became 

clear. Two large-scale connectome projects, the Developing Human Connectome Project (dHCP; 

http://www.developingconnectome.org; Bastiani et al., 2019; Bozek et al., 2018; Fitzgibbon et al., 2020; 

Hughes et al., 2017; Makropoulos et al., 2018) and the Baby Connectome Project (BCP; 

https://babyconnectomeproject.org/; Howell et al., 2019) amassed datasets including longitudinal scans 

from over 2000 participants ranging from 20-45 weeks post-conception to age five years. This work 

stemmed from a growing interest in creating dynamic maps of brain connectivity during early life, and 

factors that impact their development (Eyre et al., 2021). Large-scale datasets have also allowed for 

normative modeling of brain development (Dimitrova et al., 2020, 2021; Eyre et al., 2021; 

O‟Muircheartaigh et al., 2020). In parallel, there has been tremendous growth in software dedicated to 

processing infant neuroimaging data including: Infant FreeSurfer (Zöllei, et al., 2020), Infant Brain 

Extraction and Analysis Toolbox (iBEAT; Dai et al., 2013), Melbourne Children‟s Regional Infant Brain 

(M-CRIB; Adamson et al., 2020) and Automated Segmentation tool (AutoSeg; Wang et al., 2014) for 

structural data analysis, neonatal diffusion MRI (Bastiani, et al, 2018) for diffusion tensor imaging data, 

and resting-state data processing pipelines (Fitzgibbon, et al., 2020). 

The NIH has recently expanded this line of work with the HEALthy Brain and Child 

Development Study (HBCD; https://heal.nih.gov/research/infants-and-children/healthy-brain; Jordan et 

al., 2020; Kohlasch et al., 2021), set to launch in fall 2021 (planning phase started in 2018). This project 

grew out of the acknowledgement that discovering causal links between early experiences (i.e., substance 

use, environmental exposures, and adversity) and future health outcomes is complex and requires large 

prospective studies with detailed assessments of brain, behavior, genetics, and environmental contexts. As 

such, the goal of this project is to track neurodevelopmental trajectories from 0 to age 10 to determine 

how early experiences shape brain development and health outcomes and to illuminate factors associated 

with risk and resilience. In many ways, the fact that eight institutes at the NIH have come together to fund 
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this large, multi-site, multi-modal, longitudinal research project is reflective of a broader trend of 

collaborative common protocol endeavors.  

5. The need for a community to mature the field 

While impressive advances have been made in fetal, infant, and toddler imaging over the past 40 

years, several key challenges remain related to data acquisition and analysis (Dubois et al., 2021; Raschle 

et al., 2012). These challenges necessitate novel approaches for the field to collectively resolve (Hughes 

et al., 2017). For example, the field has yet to establish best practices for key features of this work, 

including how to account for data acquisition during natural sleep versus awake (Smyser & Neil, 2015), 

improve the resolution of the data acquired from a machinery standpoint (Cusack et al., 2018), and 

maximize the possibility of acquiring data at different ages (Graham et al., 2015). Determining best 

practices requires transparency that many researchers want but lack the avenue to achieve. If such an 

avenue existed, it would allow experts in the field to come together to share what procedures have/have 

not worked for them, and to share associated software and data.  

The need for greater collaboration has led to the creation of special interest groups and academic 

societies focused on neurodevelopment during the fetal and infant period. The International Perinatal 

Brain and Behavior Network (IPBBN), a special interest group of the International Society for 

Developmental Psychobiology (established in 2007; https://babybrain.isdp.org/), aims to advance 

research of prenatal, perinatal, and early postnatal human development, and to support new investigators 

in this area. In 2015, the Newborn Brain Society (NBS) was established (https://newbornbrainsociety.org) 

in response to several neonatal neurocritical care programs launching worldwide and questions about their 

efficacy. The NBS has since grown to have the broader goal of advancing newborn brain care through 

international collaboration. To date, NBS leadership is largely comprised of clinicians and individuals 

with research programs focused on brain injury. These initiatives  opened channels of communication for 

either clinician scientists or developmental scientist with a foci on the perinatal to newborn periods. Still 

missing was a community forum for those interested in neurodevelopmental trajectories during the most 

rapid periods of brain growth—fetal through toddler age, and scientists with diverse backgrounds (e.g., 
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clinicians, engineers) interested in early brain development. Critically, studying brain changes over this 

period has several unique challenges both in terms of acquisition and analysis. The challenges of 

longitudinal neuroimaging remained tangential to both the IPBBN and NBS‟s primary aims.  

6. Building a new community—Introduction to FIT’NG 

In response to this gap, the Fetal, Infant, Toddler Neuroimaging Group (FIT‟NG) is an academic 

society founded in 2018 that aims to provide a forum for early childhood neuroimaging researchers, 

including those technical experts (“developers,” e.g., engineers, physicists, etc.) and applied researchers 

(“appliers,” e.g., psychologists, neuroscientists, psychiatrists, neonatologists, etc.) (Figure 2). FIT‟NG 

communication among developers and appliers is focused around three core areas: establishing best 

practices within the field (e.g., scan time, staffing, preparatory procedures for scanning, data 

harmonization); community exchange and collaboration (e.g., sharing processing and analysis tools, 

sharing data); and education (e.g., training across institutions at a range of levels).  

Members of FIT‟NG work in diverse departments across medical and main university systems, 

and thus attend various scientific meetings. FIT‟NG members are often a small subgroup of researchers at 

the conferences they attend, and consequently, they lack the community needed at these meetings to 

meaningfully advance the field. FIT‟NG seeks to establish that community and to highlight the value and 

innovation in the fast-growing area of early childhood neuroimaging research. To facilitate interactions 

and provide a common space for connection, FIT‟NG has organized annual pre-conference workshops 

and several conference symposia since its inception at international meetings focused on infant, 

developmental neuroscience, and neuroimaging research (Figure 3). Since our first full-day pre-

conference workshop in 2019 entitled “FIT‟NG In: Establishing Best Practices for Infant Neuroimaging” 

at the Flux Congress, our annual workshops have expanded from 60 to over 250 participants. In addition 

to pre-conference workshops at FLUX and the International Congress on Infant Studies (ICIS), FIT‟NG 

has hosted symposiums, some in collaboration with the National Institutes of Health partners and social 

gatherings at other societal meetings that different pockets of scientists in our field attend to further 

strengthen our sense of community. These formal and informal dialogues and gatherings are essential to 
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the advancement of the field, as they provide a starting point to move toward consensus of best practice 

standards. Individuals interested in FIT‟NG can join our listserv, follow us on Twitter (@FIT_NGIn), 

and/or become members. Members have on-demand web access to materials created to facilitate training 

in FIT imaging including tutorials on how to use infant-specific software, discussions of recent papers 

that are of broad interest, and interviews with leaders in the field among other benefits detailed on our 

website. These materials are curated and maintained by our trainee-led committee, FIT‟NG Together, and 

offer an opportunity for trainees to identify key topics that they believe would advance their training.  

In 2020, we incorporated—becoming an official non-profit society. Unfortunately, the COVID-

19 pandemic has limited the initiatives that FIT‟NG has been able to launch to be virtual and has limited 

research on the developing brain because pregnant women and infants/toddlers are particularly vulnerable 

to COVID-19. For this reason, we have postponed our inaugural meeting until 2022. In 2021, we held a 

one-day virtual workshop entitled “FIT‟NG All Ages: Advantages and Challenges of Longitudinal Fetal, 

Infant, and Toddler Neuroimaging.” This as well as our other prior events sets the stage for an annual 

meeting in perpetuity and a connected community of multidisciplinary scientists who will advance the 

field. FIT‟NG is currently in the process of expanding to include scientists using modalities other than 

MRI (including EEG, fNIRS, MEG) to facilitate new directions in the study of brain development.    

7. Conclusion 

Over the course of 40 years, fetal, infant, and toddler neuroimaging has seen a rapid maturation as 

a research field from small safety and proof of concept studies to massive, large-scale NIH and 

international initiatives. To celebrate the pioneering science of the field and appreciate just how far we 

have come, this review documents a brief highlights‟ reel of this maturation. Nevertheless, many 

challenges continue to exist in fetal, infant, and toddler neuroimaging that hinder its growth and that 

cannot be solved in silos. FIT‟NG provides a forum for community building, scientific collaboration, and 

communication of new advancements in the field.  
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Figure 1. Timeline of key events in the history of fetal, infant and toddler MRI imaging
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Figure 2. FIT‟NG aims to provide a forum for early childhood neuroimaging researchers, including those 

who have technical expertise (e.g., engineers, physicists) and applied researchers (e.g., psychologists, 

psychiatrists, neonatologists)  
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Figure 3. Scientific events and activities organized by FIT‟NG.                                                           
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